A workshop tour…

There have been many and varied changes to the workshop in recent months, so it is time for a bit of a catchup.

To start with, the workshop is now the Glittery Girly Blue Room of Glittery Girlyness.

I’d love to be able to say that at the touch of a concealed button…

  • The bed flips over to reveal a workbench & milling machine
  • The headboard flolds to reveal the tool board
  • A lathe rises magically out of the dressing table.

But I can’t – it’s all rather domestic now. Well, aside from the large quantity of small engineering tools which are hiding under the bed.

In short, I’m soon to move house. The workshop had to be packed away, simply because it didn’t fit with the demographic who were likely to buy the house – 50+ divorced women looking to downsize into a trendy area.

Shortly after stripping out the workshop, putting the majority of what I own into storage and decorating every surface I accepted an offer on the house. No, it’s not from a middle aged bloke looking to put a milling machine in the back bedroom, but predictably from a middle aged woman looking to downsize into a trendy area.

One (of many) reasons behind moving is that I get to have a larger workshop. I also get to live in a less populated area, so fewer people to annoy. I get more room. A lot more room.

So I’m moving from here….

to here…

Plus I get to pocket enough money in the process to think about being mortgage free in the next couple of years.

Doesn’t it just look lovely.

There is a fair amount of work needing doing – I don’t think I’ve ever bought a house which was “finished”, and this isn’t an exception. I’ll be building an extension out back and moving the bathroom in the next couple of years. I’m only slightly intimidated by having an AGA instead of a “Proper” cooker. I’m looking forward to trying to keep the wood burning stoves lit and have already bought myself an axe.

However, this is a workshop tour.

The barn has a workshop. It is divided into three areas. One (which can be seen in the picture above) is 17 feet by 33 feet (ie massive) and is fairly modern built, stone cladding over blockwork, nice flat concrete floor. roof half boarded for storage.

The next barn is rather old – I don’t know how old, but it appears on the earliest maps of Somerset that I’ve been able to find, so pre 1800, and is stone built with a tiled roof that isn’t exactly straight, but looks good enough. It is 24 feet by 33 feet, so massive-er. Weathertight too. The current owner runs an motor racing preparation/tuning business from it.

There is also a garage, just a wide single garage thing, probably twice the size of my back bedroom workshop, so still useful.

They arrange themselves into a courtyard, which you can see in the picture above. There is also a large space out back for growing things. Since the great BramBooDlia removal (Bramble, Bamboo, Budlia = the three weeds of the apocalypse) I’ve been enjoying having a garden which approximates flat, green and boring. I think I’m ready for an orchard. I’ll have about half an acre in total.

The nearest three phase transformer is on a pole less than 100 metres away. I’m just throwing that out there… I’m not actually planning on buying an industrial power hammer for forging metal the day I move in. I don’t need three phase, I can get by perfectly well without it. We’ll see what the quote is like for connection.

Anyone got a nice fettled Bridgeport going for a reasonable price ?

Cutting Dovetails

I have a dovetail milling cutter.


The shank is marked “20×8 60 degree HSS-E”, this is quite easy to understand. The base of the cutter measusres 20mm diameter, the vertical height of the cutter is 8mm. It cuts 60 degree dovetails and is made of HSS-E.

The box calls it a 20x12x8x63x60D 6FL D Cutter Flatted Shank, this is a lot more information.

  1. 20x – The base diameter
  2. 12x – The diameter of the shank
  3. 8x – The vertical height of the cutting surface
  4. 63x – The overall length of the tool
  5. 60D – 60 Degree Dovetail
  6. 6FL – Six Flutes
  7. D – Unsure, does this mean flatted shank?
  8. Flatted Shank – Means of holding. I’m using collets, so this isn’t perfect but still OK.

I purchased it from Axminster who were doing special offers – I paid £14.75 for it.

I need to cut a bunch of dovetails and I don’t want to spend ages faffing around. So it is worth spending a bit of time planning..

I’m aiming for a 5mm deep dovetail. The base of the dovetail cutter is 20mm, the flutes angle at 60 degrees, so over 5mm depth the radius will reduce by 5/tan60 = 2.89mm, so the width of the cut at the top would be 20-(2*2.89) = 14.22 mm.

Clearly, I’m not going to plunge a dovetail cutter right into the side of the job. It’s a fairly expensive cutter and easily damaged. I want to use it to remove the minimum amount of material.

The dovetails I’m cutting have a top width of 20mm, so it would be a good idea to open out much of this before using the dovetaill cutter.

Ideally, I’d get a 14.22mm end mill, cut a slot with that, move over by 5.78mm and make another pass, leaving a 20.0x5mm notch ready for the dovetail cutter.

However, I don’t have a 14.22mm cutter, and I’d have to change collets even if I did. I need to use a 12mm collet for the dovetail cutter, so that implies using a 12mm end mill.

So my milling procedure becomes….

  1. Set up 12mm end mill on surface of part.
  2. Back off the part and move down by 5mm.
  3. Start the mill and mill a slot through the part.
  4. Move left by 5.75mm
  5. Mill back through the part.
  6. Lift the head, swap the end mill for the dovetail cutter
  7. Drop the head back down to just touch the dovetail cutter to the milled surface.
  8. Mill back through the part.
  9. Move right by 5.75mm
  10. Mill back through the part.
  11. Take the part off and touch the dovetail corners with a file.

So, there we go, a simple way of milling a series of dovetails without too much measuring and faffing about.

I’d be really interested in any comments about how to do it better!



Angle Grinder Stand

So, this angle grinder stand arrived today. IMG_20160127_181629 (2)

I’ve long had a bit of a Tennis Elbow problem in my right elbow. It started after a weekend at the UK Pinball Party, and it seems that it isn’t going away any time soon. Usually it’s all fine, just if I do a bit of strenuous sawing it aches a bit and I have to be a bit careful of it.

So I was after a cheap method of cutting stock without any effort. I don’t have room for the traditional metal cutting bandsaw, and as my workshop is my back bedroom, a screaming bandsaw might not go down too well with next door. They have a small baby, it screams, but I’m informed that it is “not the same thing at all”.

I unpacked it, and managed to find the angle grinder that I’d bought for cutting up an oil drum to make a furnace (still got to do that…)

IMG_20160127_182309 (2)

I’d seen various unboxing and assembly videos on YouTube, but was surprised to find that the base is cast iron. I’d assumed that it would be nasty plastic. The stand cost me the grand total of £18.25 and my expectations were not high.

Assembly is straightforward, it coped well with the angled handle attachments on the Bosch grinder. I used a square the set the rather primitive vise back jaw square and to set the blade vertical. It’s not blob on, but I’ll be tidying the ends up on the mill so no great worries there.


I’m going to make a few tool holders (using the knurled nuts) so I thought I’d give it a try on the 1 inch square aluminium stock I’ll be using for those. All was not straighforward 😉


It seems that the grinder can’t quite cut all the way through the stock. It left a tiny whisker attached. This is no big deal, but it would be interesting to look at the reasons why.

IMG_20160127_185320 (2)

It seems that the guard on the grinder hits the stock before it cuts all the way through. This is a grinder issue – essentially the grinder is only capable of cutting through one inch – pretty much exactly. Ho hum. It’s no big issue to either flip the stock over and cut through the last bit, or just bend the cut portion off, but it does illustrate the limitations of using an angle grinder rather than one of those dandy Evolution chop saws.

Taking the guard off. Yes, I did take the guard off the angle grinder. Yes, it is a really silly idea. The nose of the grinder touched the stock and still left a whisker attached.IMG_20160127_185716 (2)

This was the point where I realised that the wear of the cutting discs was significant. I put the disc that I’d used to make two cuts through the inch square aluminium stock on top of a new disc.

IMG_20160127_190106 (2)

I reckon it took about 2mm off the disk on each cut. The discs are not expensive – about 60p each, but combined with the depth restriction it is a significant effect.

IMG_20160127_212858 (2)

You can see each of the four cuts is slightly less deep than before. I was able to snap them apart by just bending them, but I did think about holding the last one in a vise (but then tried a bit harder instead).

So, well worth the few quid, takes up much less space than a gert big chopsaw, but does have restrictions. I’m satisfied with it.



Knurling update


A quick update on the knurling.

A little musing and I realised that the wheels on the knurling tool were 3/4″ diameter and had 48 knurl features around their circumference. This means that if they were an inch in diameter, they would leave 64 features. This is a nice round number in imperial-world.

So I needed to ensure my diameters were in 64ths of an inch for the pattern to repeat properly.

I also did a bit of reading up and discovered – much to my amazement – that you can/should feed the knurling tool across your work. Which seemed a bit counter intuitive to me.

So I gave it a go, turned my nice 14mm metric brass rod down to ‘arf hinch, set the centre of the knurling tool on the right height, clamped it reasonably tightly and started at a very slow speed.

Once the knurl had picked up, I was able to tighten the clamp nut a bit more and noted the roughened surface. I kicked in the feed and it very slowly traversed.

After it had done a bit, I gave it a squirt of cutting oil, just to see if there was a difference.

So, looking at the picture above, the knurl is pretty (there are a couple of flaws where I held the nuts in pliers to tap the holes), but I’m quite happy with that.

So, I now have four knurled nuts, two nice, two satisfactory (grumble) and can move on to making a batch of four tool holders.